A representation theorem for Chain rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Representation Theorem for Partially Ordered Commutative Rings

An extension of the Kadison-Dubois representation theorem is proved. This extends both the classical version [3] and the preordering version given by Jacobi in [5]. It is then shown how this can be used to sharpen the results on representations of strictly positive polynomials given by Jacobi and Prestel in [6]. In [4] Dubois extends a result of Kadison on representation of archimedean partiall...

متن کامل

A Commutativity Theorem for Associative Rings

Let m > 1; s 1 be xed positive integers, and let R be a ring with unity 1 in which for every x in R there exist integers p = p(x) 0; q = q(x) 0;n = n(x) 0; r = r(x) 0 such that either x p x n ; y]x q = x r x; y m ]y s or x p x n ;y]x q = y s x; y m ]x r for all y 2 R. In the present paper it is shown that R is commutative if it satisses the property Q(m) (i.e. for all x; y 2 R;mx; y] = 0 implie...

متن کامل

A Dirichlet Theorem for Polynomial Rings

We prove a Dirichlet theorem for polynomial rings: Let F be a pseudo algebraically closed field (i.e., each nonempty variety defined over F has an F-rational point). Then for all relatively prime polynomials a(X), b(X) ∈ F [X] and for every sufficiently large integer n there exist infinitely many polynomials c(X) ∈ F [X] such that a(X) + b(X)c(X) is irreducible of degree n, provided that F has ...

متن کامل

Dirichlet’s Theorem for Polynomial Rings

We prove the following form of Dirichlet’s theorem for polynomial rings in one indeterminate over a pseudo algebraically closed field F . For all relatively prime polynomials a(X), b(X) ∈ F [X] and for every sufficiently large integer n there exist infinitely many polynomials c(X) ∈ F [X] such that a(X) + b(X)c(X) is irreducible of degree n, provided that F has a separable extension of degree n.

متن کامل

A Kadison–Dubois representation for associative rings

In this paper we give a general theorem that describes necessary and sufficient conditions for a module to satisfy the so–called Kadison–Dubois property. This is used to generalize Jacobi’s version of the Kadison–Dubois representation to associative rings. We apply this representation to obtain a noncommutative algebraic and geometric version of Putinar’s Positivstellensatz. We finish the paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2003

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm96-1-10